Busca avançada
Ano de início
Entree


Pós-processamento de regras de regressão

Texto completo
Autor(es):
Jaqueline Brigladori Pugliesi
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Solange Oliveira Rezende; Alexandre Gonçalves Evsukoff; Maria Carolina Monard; Jaime Simão Sichman; Flavio Soares Correa da Silva
Orientador: Solange Oliveira Rezende
Resumo

O processo de Mineração de Dados inicia-se com o entendimento do domínio da aplicação, considerando aspectos como os objetivos da aplicação e as fontes de dados. Em seguida, é realizado o pré-processamento dos dados e a extração de padrões. Após a etapa de extração de padrões, vem a de pós-processamento, na qual o conhecimento é avaliado quanto a sua qualidade e/ou utilidade a fim de ser utilizado para apoio a algum processo de tomada de decisão. Recentemente, as pesquisas têm se voltado para problemas de regressão, porém a regressão em Mineração de Dados preditiva é uma questão pouco explorada dentro do processo de extração de conhecimento de bases de dados, sendo de grande relevância o estudo de métodos para a exploração de tarefas desse tipo. Alguns trabalhos vêm sendo realizados no Laboratório de Inteligência Computacional (LABIC) em temas relacionados ao processo de Extração de Conhecimento de Bases de Dados e Textos e na construção de um ambiente computacional para extração de conhecimento de dados denominado DlSCOVER. Para apoiar a construção de um modelo de regressão simbólico e o pós-processamento de problemas de regressão foi proposto e desenvolvido o Ambiente \'RTJ^FL, Esse ambiente viabiliza a avaliação de regras de regressão, inclusive disponibilizando estratégias para o cálculo da matriz de contingência e consequente utilização de todas as medidas derivadas dessa matriz para avaliação de regras de regressão; a combinação de regressores homogéneos e heterogéneos para melhorar a precisão dos regressores e a integração e poda de regras de regressão obtidas de diferentes amostras ou algoritmos. Essas funcionalidades do Ambiente íR$í\'I*PE incrementam a potencialidade do Ambiente DlSCOVER quanto ao tratamento de regressão. (AU)

Processo FAPESP: 00/07939-0 - O pós-processamento em extração de conhecimento de bases de dados
Beneficiário:Jaqueline Brigladori Pugliesi
Modalidade de apoio: Bolsas no Brasil - Doutorado