Busca avançada
Ano de início
Entree


Caracterização e recuperação de imagens usando dicionários visuais semanticamente enriquecidos

Texto completo
Autor(es):
Glauco Vitor Pedrosa
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Agma Juci Machado Traina; Célia Aparecida Zorzo Barcelos; Marcos Aurélio Batista; Alexandre Xavier Falcão; Aparecido Nilceu Marana
Orientador: Agma Juci Machado Traina
Resumo

A análise automática da similaridade entre imagens depende fortemente de descritores que consigam caracterizar o conteúdo das imagens em dados compactos e discriminativos. Esses dados extraídos e representados em um vetor-de-características tem o objetivo de representar as imagens nos processos de mineração e análise para classificação e/ou recuperação. Neste trabalho foi explorado o uso de dicionários visuais e contexto para representar e recuperar as características locais das imagens utilizando formalismos estendidos com alto poder descritivo. Esta tese apresenta em destaque três novas propostas que contribuem competitivamente com outros trabalhos da literatura no avanço do estado-da-arte, desenvolvendo novas metodologias para a caracterização de imagens e para o processamento de consultas por similaridade. A primeira proposta estende a modelagem Bag-of-Visual-Words, permitindo codificar a interação entre palavras-visuais e suas disposições espaciais na imagem. Para tal fim, três novas abordagem são apresentadas: (i) Weighted Histogram (WE); (ii) Bunch-of-2-grams e (iii) Global Spatial Arrangement (GSA). Cada uma dessas técnicas permitem extrair informações semanticamente complementares, que enriquecem a representação final das imagens descritas em palavras-visuais. A segunda proposta apresenta um novo descritor, chamado de Bag-of-Salience-Points (BoSP), que caracteriza e analisa a dissimilaridade de formas (silhuetas) de objetos explorando seus pontos de saliências. O descritor BoSP se apoia no uso de um dicionário de curvaturas e em histogramas espaciais para representar sucintamente as saliências de um objeto em um único vetor-de-características de tamanho fixo, permitindo recuperar formas usando funções de distâncias computacionalmente rápidas. Por fim, a terceira proposta apresenta um novo modelo de consulta por similaridade, denominada Similarity Based on Dominant Images (SimDIm), baseada no conceito de Imagens Dominantes, que é um conjunto que representa, de uma maneira mais diversificada e reduzida, toda a coleção de imagens da base de dados. Tal conceito permite dar mais eficiência quando se deseja analisar o contexto da coleção, que é o objetivo da proposta. Os experimentos realizados mostram que os métodos propostos contribuem de maneira efetiva para caracterizar e quantificar a similaridade entre imagens por meio de abordagens estendidas baseadas em dicionários visuais e análise contextual, reduzindo a lacuna semântica existente entre a percepção humana e a descrição computacional. (AU)

Processo FAPESP: 11/21460-4 - Estudo e Definição da Abordagem Bag-of-Features para Recuperação de Imagens Médicas Atendendo às Expectativas dos Especialistas
Beneficiário:Glauco Vitor Pedrosa
Modalidade de apoio: Bolsas no Brasil - Doutorado