Busca avançada
Ano de início
Entree


Estados coerentes para Hamiltonianos quadráticos de forma geral

Texto completo
Autor(es):
Alberto Silva Pereira
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Data de defesa:
Membros da banca:
Dmitri Maximovitch Guitman; Evaldo Mendonça Fleury Curado; Rodrigo Fresneda; Renato Higa; Adilson Jose da Silva
Orientador: Dmitri Maximovitch Guitman
Resumo

Nesta tese, obtemos estados quânticos que satisfazem a equação de Schrödinger, para Hamiltonianos quadráticos de forma geral e, ao mesmo tempo, permitem de maneira natural obter a correspondência com a descrição clássica. Usamos o método de integrais de movimento para construir operadores de criação e aniquilação, que satisfazem a álgebra de Weyl-Heisenberg. Dessa forma, construímos os estados de número generalizados (ENG) de maneira análoga ao que é feito para os estados de Fock. Obtemos diferentes famílias de estados coerentes (EC), através de uma superposição dos ENG, que chamamos de estados coerentes generalizados (ECG). Esses estados são rotulados pela constante complexa z escrita em termos do valor esperado inicial da coordenada e do momento. Escrevemos os ECG em função do desvio padrão inicial na coordenada, $\\sigma_q$, de modo a minimizar a relação de incerteza de Heisenberg no instante de tempo inicial. Obtemos, de forma pioneira, os ECG para partícula livre e discutimos em detalhes suas propriedades, tal como a relação de completeza, a minimização das relações de incerteza e a evolução da correspondente densidade de probabilidade. Mostramos que o valor esperado da coordenada e do momento segue ao longo da trajetória clássica no espaço de fase. Mostramos que, quando o comprimento de onda da partícula livre é muito menor que $\\sigma_q$, os EC se comportam como estados semiclássicos. Além da partícula livre, construímos pela primeira vez, os ECG para o oscilador invertido e discutimos em detalhes suas propriedades. Mostramos que os ECG de sistemas diferentes podem ser relacionados, impondo condições sobre os parâmetros do Hamiltoniano. Por fim, consideramos Hamiltonianos dependentes do tempo, em particular, construímos os ECG, de forma exata, para um oscilador harmônico cuja frequência varia explicitamente no tempo. Mostramos ainda modelos úteis para obter solução exata de sistemas dependentes do tempo, fazendo analogia com a equação de spin ou equação de Schrödinger unidimensional independente do tempo. Além disso, desenvolvemos um método próprio, que fixa a solução e em seguida determinamos a forma da frequência. (AU)

Processo FAPESP: 13/02966-0 - Movimento quântico de uma carga em campos eletromagnéticos na representação de probabilidades e seus correspondentes estados coerentes
Beneficiário:Alberto Silva Pereira
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto