Busca avançada
Ano de início
Entree


Utilizando a Inteligência Computacional para a Pulverização Precisa de Produtos Fitofarmacêuticos

Texto completo
Autor(es):
Bruno Squizato Faiçal
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Jo Ueyama; Edmundo Roberto Mauro Madeira; Renato Tinós; Cláudio Fabiano Motta Toledo
Orientador: Jo Ueyama
Resumo

O manejo de proteção com uso de produtos fitofarmacêuticos possibilita o controle de pragas em ambientes agrícolas, tornando-o menos nocivo para o desenvolvimento da cultura e com produção em grande escala. Porém, apenas uma pequena parte do produto pulverizado realmente é depositado na área alvo enquanto a maior parte do produto sofre deriva para regiões vizinhas. A literatura científica possui trabalhos com o uso de técnicas matemáticas para calcular a transformação física e movimento para estimar a deposição do produto. Com base nessa predição é possível configurar o sistema de pulverização para realizar a pulverização sob uma condição meteorológica comum na região para um desempenho satisfatório, mas as condições meteorológicas podem sofrer alterações e tornar qualquer configuração estática ineficiente. Uma alternativa para esse problema é realizar a adaptação da atuação do elemento pulverizador às condições meteorológicas durante a execução do manejo de proteção. Contudo, as técnicas existentes são computacionalmente custosas para serem executadas, tornando-as inadequadas para situações em que é requerido baixo tempo de execução. Esta tese se concentra no contexto descrito com objetivo de permitir a predição da deposição de forma rápida e precisa. Assim, espera-se que as novas abordagens sejam capazes de possibilitar a adaptação do elemento pulverizador às condições meteorológicas durante a realização do manejo de proteção. Este trabalho inicia com o processo de redução do custo de execução de um modelo computacional do ambiente, tornando sua execução mais rápida. Posteriormente, utiliza-se este modelo computacional para predição da deposição como função Fitness em algoritmos de meta-heurística para adaptar o comportamento do elemento pulverizador às condições meteorológicas durante a realização do manejo. Os resultados desta abordagem demonstram que é possível utilizá-la para realizar a adaptação em ambientes com baixa variabilidade. Por outro lado, pode apresentar baixo desempenho em ambientes com alta variabilidade nas condições meteorológicas. Uma segunda abordagem é investigada e analisada para este cenário, onde o processo de adaptação requer um tempo de execução reduzido. Nesta segunda abordagem é utilizado uma técnica de Aprendizado de Máquina treinada com os resultados gerados pela primeira abordagem em diferentes cenários. Os resultados obtidos demonstram que essa abordagem possibilita realizar a adaptação do elemento pulverizador compatível com a proporcionada pela abordagem anterior em um menor espaço de tempo. (AU)

Processo FAPESP: 13/18859-8 - Utilizando inteligência computacional e VANTs para reduzir a deriva na aplicação de agrotóxicos
Beneficiário:Bruno Squizato Faiçal
Modalidade de apoio: Bolsas no Brasil - Doutorado