Busca avançada
Ano de início
Entree


Metodo dos volumes finitos para leis de conservação

Texto completo
Autor(es):
Wanderson José Lambert
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Marcelo Martins dos Santos; Philippe Remy Bernard Devloo; Milton da Costa Lopes Filho
Orientador: Marcelo Martins dos Santos; Petronio Pulino
Resumo

Neste trabalho, estudamos a convergência do Método dos Volumes Finitos aplicado a Leis de Conservação Escalares Multidimensional, seguindo os trabalhos de Cockburn et aI. [7] e Benharbit et. aI [3]. Tratamos aqui, o Problema de Valor Inicial e de Fronteira (PVIF). O Método dos Volumes Finitos é aplicado a diversos problemas, principalmente em dinâmica de fluidos, desde os anos 50, mas somente nos últimos 15 anos que foi melhorado. A grande vantagem deste método é que ele trata bem geometrias complexas e choques, comuns em Leis de Conservação. A convergência segue da unicidade da Solução em Medida (MV-Solution) para uma Lei de Conservação, Szepessy [59]. Compacidade Compensada, Soluções em Medida e Medidas de Young para Leis de Conservação apareceram primeiramente nos trabalhos de Murat [46]-[47], Tartar [62]-[63] e Diperna [15]-[17], para Problemas de Valor Inicial e para Sistemas de Leis de Conservação 2 x 2; e, depois disso, para um PVIF por Szepessy [59]. Seguindo estes artigos, Cockburn et aI. and Benharbit et. aI obtiveram, independentemente, a convergência forte para do esquema para a única solução entrópica descontínua no sentido de Bardos [2] (AU)

Processo FAPESP: 99/11123-7 - As equações de Buckley Leverett e Rapoport-Leas: esquemas numéricos e solução em medida
Beneficiário:Wanderson Jose Lambert
Modalidade de apoio: Bolsas no Brasil - Mestrado