Busca avançada
Ano de início
Entree


Similaridade em big data

Texto completo
Autor(es):
Lúcio Fernandes Dutra Santos
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Caetano Traina Junior; Sergio Lifschitz; Marcela Xavier Ribeiro; Vaninha Vieira dos Santos; Marcos Rodrigues Vieira
Orientador: Caetano Traina Junior
Resumo

Os volumes de dados armazenados em grandes bases de dados aumentam em ritmo sempre crescente, pressionando o desempenho e a flexibilidade dos Sistemas de Gerenciamento de Bases de Dados (SGBDs). Os problemas de se tratar dados em grandes quantidades, escopo, complexidade e distribuição vêm sendo tratados também sob o tema de big data. O aumento da complexidade cria a necessidade de novas formas de busca - representar apenas números e pequenas cadeias de caracteres já não é mais suficiente. Buscas por similaridade vêm se mostrando a maneira por excelência de comparar dados complexos, mas até recentemente elas não estavam disponíveis nos SGBDs. Agora, com o início de sua disponibilidade, está se tornando claro que apenas os operadores de busca por similaridade fundamentais não são suficientes para lidar com grandes volumes de dados. Um dos motivos disso é que similaridade\' é, usualmente, definida considerando seu significado quando apenas poucos estão envolvidos. Atualmente, o principal foco da literatura em big data é aumentar a eficiência na recuperação dos dados usando paralelismo, existindo poucos estudos sobre a eficácia das respostas obtidas. Esta tese visa propor e desenvolver variações dos operadores de busca por similaridade para torná-los mais adequados para processar big data, apresentando visões mais abrangentes da base de dados, aumentando a eficácia das respostas, porém sem causar impactos consideráveis na eficiência dos algoritmos de busca e viabilizando sua execução escalável sobre grandes volumes de dados. Para alcançar esse objetivo, este trabalho apresenta quatro frentes de contribuições: A primeira consistiu em um modelo de diversificação de resultados que pode ser aplicado usando qualquer critério de comparação e operador de busca por similaridade. A segunda focou em definir técnicas de amostragem e de agrupamento de dados com o modelo de diversificação proposto, acelerando o processo de análise dos conjuntos de resultados. A terceira contribuição desenvolveu métodos de avaliação da qualidade dos conjuntos de resultados diversificados. Por fim, a última frente de contribuição apresentou uma abordagem para integrar os conceitos de mineração visual de dados e buscas por similaridade com diversidade em sistemas de recuperação por conteúdo, aumentando o entendimento de como a propriedade de diversidade pode ser aplicada. (AU)

Processo FAPESP: 13/01517-7 - Similaridade em Big Data
Beneficiário:Lúcio Fernandes Dutra Santos
Modalidade de apoio: Bolsas no Brasil - Doutorado