Busca avançada
Ano de início
Entree


O teorema do índice de Morse para métricas indefinidas e para sistemas Hamiltonianos

Texto completo
Autor(es):
Daniel Victor Tausk
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: Paolo Piccione
Resumo

Se (M,g) é uma variedade Riemanniana e 'gama':[a,b]'seta'M é uma geodésica, então o clássico Teorema do Índice de Morse diz que o índice geométrico de 'gama' (i.e., o número de pontos conjugados ao longo de 'gama' contados com multiplicidade) coincide com o índice de Morse de 'gama' (i.e., o índice da segunda variação do funcional ação E(u)=1/2 'INT.'IND. a POT. b' g(ul,ul) no ponto crítico 'gama'). Neste tese nós provamos uma versão do Teorema do Índice de Morse para geodésicas em variedades semi-Riemannianas, i.e., variedades equipadas com um tensor métrico g de sinal indefinido. Consideramos o o caso geral de geodésicas com extremos variáveis em subvariedades de M. No caso semi-Riemanniano o índice geométrico é substituido pelo indice de Maslov, que genericamente fornece uma contagem algébrica dos pontos conjugados ao longo da geodésica, o índice e o co-índice de restrições adequadas da segunda variação do funcional ação em 'gama'. Provamos também um Teorema do Índice para soluções de sistemas Hamiltonianos em variedades simpléticas equipadas de uma distribuição Lagrangeana (AU)

Processo FAPESP: 98/12530-2 - Generalização da Teoria de Morse e aplicações a geometria Lorentziana
Beneficiário:Daniel Victor Tausk
Modalidade de apoio: Bolsas no Brasil - Doutorado