Métodos homológicos em cálculo das variações e teoria dos pontos críticos: aplicaç...
Yang Jianfu | Institute of Physics/Chinese Academy of Sciences - China
![]() | |
Autor(es): |
Daniel Victor Tausk
Número total de Autores: 1
|
Tipo de documento: | Tese de Doutorado |
Imprenta: | São Paulo. |
Instituição: | Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI) |
Data de defesa: | 2000-08-15 |
Orientador: | Paolo Piccione |
Resumo | |
Se (M,g) é uma variedade Riemanniana e 'gama':[a,b]'seta'M é uma geodésica, então o clássico Teorema do Índice de Morse diz que o índice geométrico de 'gama' (i.e., o número de pontos conjugados ao longo de 'gama' contados com multiplicidade) coincide com o índice de Morse de 'gama' (i.e., o índice da segunda variação do funcional ação E(u)=1/2 'INT.'IND. a POT. b' g(ul,ul) no ponto crítico 'gama'). Neste tese nós provamos uma versão do Teorema do Índice de Morse para geodésicas em variedades semi-Riemannianas, i.e., variedades equipadas com um tensor métrico g de sinal indefinido. Consideramos o o caso geral de geodésicas com extremos variáveis em subvariedades de M. No caso semi-Riemanniano o índice geométrico é substituido pelo indice de Maslov, que genericamente fornece uma contagem algébrica dos pontos conjugados ao longo da geodésica, o índice e o co-índice de restrições adequadas da segunda variação do funcional ação em 'gama'. Provamos também um Teorema do Índice para soluções de sistemas Hamiltonianos em variedades simpléticas equipadas de uma distribuição Lagrangeana (AU) | |
Processo FAPESP: | 98/12530-2 - Generalização da Teoria de Morse e aplicações a geometria Lorentziana |
Beneficiário: | Daniel Victor Tausk |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |