Proposta de uma metodologia quantitativa de análise do jogo em esportes coletivos ...
Algoritmos para inferência e aprendizado de programas lógicos probabilísticos
![]() | |
Autor(es): |
Fernando Granha Jeronimo
Número total de Autores: 1
|
Tipo de documento: | Dissertação de Mestrado |
Imprenta: | Campinas, SP. |
Instituição: | Universidade Estadual de Campinas (UNICAMP). Instituto de Computação |
Data de defesa: | 2015-08-17 |
Membros da banca: |
Arnaldo Vieira Moura;
Franklin de Lima Marquezino;
Julio César López Hernández
|
Orientador: | Arnaldo Vieira Moura |
Resumo | |
Desde seu surgimento, Teoria da Computação tem lidado com modelos computacionais de maneira matemática e abstrata. A noção de computação eficiente foi investigada usando esses modelos sem procurar entender as capacidades e limitações inerentes ao mundo físico. A Computação Quântica representa uma ruptura com esse paradigma. Enraizada nos postulados da Mecânica Quântica, ela é capaz de atribuir um sentido físico preciso à computação segundo nosso melhor entendimento da natureza. Esses postulados dão origem a propriedades fundamentalmente diferentes, uma em especial, chamada emaranhamento, é de importância central para computação e processamento de informação. O emaranhamento captura uma noção de correlação que é única a modelos quânticos. Essas correlações quânticas podem ser mais fortes do que qualquer correlação clássica estando dessa forma no coração de algumas capacidades quânticas que vão além do clássico. Nessa dissertação, nós investigamos o emaranhamento da perspectiva da complexidade computacional quântica. Mais precisamente, nós estudamos uma classe bem conhecida, definida em termos de verificação de provas, em que um verificador tem acesso à múltiplas provas não emaranhadas (QMA(k)). Assumir que as provas não contêm correlações quânticas parece ser uma hipótese não trivial, potencialmente fazendo com que essa classe seja maior do que aquela em que há apenas uma prova. Contudo, encontrar cotas de complexidade justas para QMA(k) permanece uma questão central sem resposta por mais de uma década. Nesse contexto, nossa contribuição é tripla. Primeiramente, estudamos classes relacionadas mostrando como alguns recursos computacionais podem afetar seu poder de forma a melhorar a compreensão a respeito da própria classe QMA(k). Em seguida, estabelecemos uma relação entre Probabilistically Checkable Proofs (PCP) clássicos e QMA(k). Isso nos permite recuperar resultados conhecidos de maneira unificada e simplificada. Para finalizar essa parte, mostramos que alguns caminhos para responder essa questão em aberto estão obstruídos por dificuldades computacionais. Em um segundo momento, voltamos nossa atenção para modelos restritos de computação quântica, mais especificamente, autômatos quânticos finitos. Um modelo conhecido como Two-way Quantum Classical Finite Automaton (2QCFA) é o objeto principal de nossa pesquisa. Seu estudo tem o intuito de revelar o poder computacional provido por memória quântica de dimensão finita. Nos estendemos esse autômato com a capacidade de colocar um número finito de marcadores na fita de entrada. Para qualquer número de marcadores, mostramos que essa extensão é mais poderosa do que seus análogos clássicos determinístico e probabilístico. Além de trazer avanços em duas linhas complementares de pesquisa, essa dissertação provê uma vasta exposição a ambos os campos: complexidade computacional e autômatos (AU) | |
Processo FAPESP: | 13/20661-1 - Computação Quântica: Autômatos, Jogos e Complexidade |
Beneficiário: | Fernando Granha Jeronimo |
Modalidade de apoio: | Bolsas no Brasil - Mestrado |