Advanced search
Start date
Betweenand


Computação quântica: autômatos, jogos e complexidade

Full text
Author(s):
Fernando Granha Jeronimo
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Defense date:
Examining board members:
Arnaldo Vieira Moura; Franklin de Lima Marquezino; Julio César López Hernández
Advisor: Arnaldo Vieira Moura
Abstract

Since its inception, Theoretical Computer Science has dealt with models of computation primarily in a very abstract and mathematical way. The notion of efficient computation was investigated using these models mainly without seeking to understand the inherent capabilities and limitations of the actual physical world. In this regard, Quantum Computing represents a rupture with respect to this paradigm. Rooted on the postulates of Quantum Mechanics, it is able to attribute a precise physical notion to computation as far as our understanding of nature goes. These postulates give rise to fundamentally different properties one of which, namely entanglement, is of central importance to computation and information processing tasks. Entanglement captures a notion of correlation unique to quantum models. This quantum correlation can be stronger than any classical one, thus being at the heart of some quantum super-classical capabilities. In this thesis, we investigate entanglement from the perspective of quantum computational complexity. More precisely, we study a well known complexity class, defined in terms of proof verification, in which a verifier has access to multiple unentangled quantum proofs (QMA(k)). Assuming the proofs do not exhibit quantum correlations seems to be a non-trivial hypothesis, potentially making this class larger than the one in which only a single proof is given. Notwithstanding, finding tight complexity bounds for QMA(k) has been a central open question in quantum complexity for over a decade. In this context, our contributions are threefold. Firstly, we study closely related classes showing how computational resources may affect its power in order to shed some light on $\QMA(k)$ itself. Secondly, we establish a relationship between classical Probabilistically Checkable Proofs and QMA(k) allowing us to recover known results in unified and simplified way, besides exposing the interplay between them. Thirdly, we show that some paths to settle this open question are obstructed by computational hardness. In a second moment, we turn our attention to restricted models of quantum computation, more specifically, quantum finite automata. A model known as Two-way Quantum Classical Finite Automaton (2QCFA) is the main object of our inquiry. Its study is intended to reveal the computational power provided by finite dimensional quantum memory. We extend this automaton with the capability of placing a finite number of markers in the input tape. For any number of markers, we show that this extension is more powerful than its classical deterministic and probabilistic analogues. Besides bringing advances to these two complementary lines of inquiry, this thesis also provides a vast exposition to both subjects: computational complexity and automata theory (AU)

FAPESP's process: 13/20661-1 - Quantum Computing: Automaton, Games and Complexity
Grantee:Fernando Granha Jeronimo
Support Opportunities: Scholarships in Brazil - Master