Busca avançada
Ano de início
Entree


Detecção de anomalias, interpolação e previsão em tempo real de séries temporais para operação de reservatórios e distribuição de água

Texto completo
Autor(es):
Leonardo Fonseca Larrubia
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Chang Chiann; Valderio Anselmo Reisen; Marcelo Magalhães Taddeo
Orientador: Chang Chiann
Resumo

Desenvolvemos uma solução via análise de séries temporais visando resolver um problema recorrente em Centros de Controle Operacionais de distribuição de água: anomalias em dados recebidos das estações de telemetria em tempo real para tomadas de decisão. A solução desenvolvida consiste em fazer detecção de outliers, reconstrução de valores omissos e previsão. Para tanto, foram utilizadas séries temporais geradas por equipamentos de medição de nível, vazões de entrada e de saídas do reservatório e de pressões a montante e a jusante de válvulas que controlam o fluxo de água. Os dados, referentes ao sistema de distribuição de água da cidade de Peruíbe, foram fornecidos pela Sabesp da Baixada Santista e sua amostragem temporal é a cada hora, indo das 1:00 do dia 1º de janeiro de 2017 até às 23:00 do dia 31 de dezembro de 2018. Para a detecção de outliers e preenchimento de valores omissos, foram propostos procedimentos que usam três técnicas principais: ajuste de curvas via regressão, decomposição clássica junto a regressão e decomposição STL. Já para previsão, foram utilizadas técnicas de rolling analysis em combinação com modelos SARIMA, modelos de regressão com erros auto correlacionados e modelos BATS e TBATS. Os resultados demonstraram que os métodos propostos, tanto para detecção de outliers e preenchimento de valores omissos, como para a previsão, possuem desempenhos muito bons para a maioria das séries. (AU)

Processo FAPESP: 18/26592-5 - Desenvolvimento de um modelo de previsão em tempo real para demanda e reservação com dados big data na indústria da água
Beneficiário:Leonardo Fonseca Larrubia
Modalidade de apoio: Bolsas no Brasil - Mestrado