Busca avançada
Ano de início
Entree


Autômato celular probabilista, modelos unidimensionais de trânsito e teoria de filas

Texto completo
Autor(es):
Fredy Walter Castellares Cáceres
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: Pablo Augusto Ferrari
Resumo

Modelos de trânsito de partículas aparecem na vida real e têm se convertido numa área de pesquisa muito ativa. embora bastante estudados, desde 1992, com a publicação do artigo de Nagel-Schreckembrg, por meio de simulações computacionais e por diversos métodos teóricos aproximados como os modelos de campo médio, existem poucos resultados rigorosos.Mostramos resultados rigorosos para vários modelos de trânsito. Provamos a existência de transição de fase e propriedades assintóticas para o autômato celular 184 e para o modelo de Fukui-Ishibashi, que generaliza o autômato 184, permitindo movimento de partículas velozes. Introduzimos um autômato celular probabilista que resgata as propriedades dos modelos de Schadschneider-Schreckenberg, conhecidos como autômatos com regras slow-to-star. Provamos a existência de transição de fase, encontramos o fluxo assintótico. Introduzimos o autômato celular probabilista com distribuição inicial a medida produto de Bernoulli de densidade p e de dinâmica de evolução dada por: cada partícula espera um tempo aleatório que tem distribuição geométrica de parâmetro p para mover-se pela primeira vez. Após este tempo, as partículas movem-se com velocidade 1 para sempre ou, em caso contrário, se deterão (várias partículas podem ocupar o mesmo sítio) se encontrarem alguma partícula parada na sua frente que bloqueie seu movimento. Neste caso as velocidades das partículas voltarão para 0 e as partículas ficarão bloqueadas até que a partícula ou as partículas que bloqueiam seus caminhos tenham partido. A partir deste instante, a partícula não bloqueada espera mais um tempo aleatório com distribuição geométrica para mover-se. Finalmente, introduziremos um modelo de trânsito de partículas que é contínuo no tempo e no espaço, que denominaremos Modelo Pontual. (AU)

Processo FAPESP: 00/04457-5 - Autômatas celulares em várias dimensões
Beneficiário:Fredy Walther Castellares Cáceres
Modalidade de apoio: Bolsas no Brasil - Doutorado