Teoria de valorização de anéis de grupos e homologia de grupos solúveis
Fibrações de Lefschetz, grupoides de Lie e geometria não-comutativa
Sistemas de controle linear em grupos de Lie: controlabilidade nulo
![]() | |
Autor(es): |
Edson Carlos Licurgo Santos
Número total de Autores: 1
|
Tipo de documento: | Tese de Doutorado |
Imprenta: | Campinas, SP. |
Instituição: | Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica |
Data de defesa: | 2007-06-25 |
Membros da banca: |
Luiz Antonio Barrera San Martin;
Pedro Jose Catuogno;
Caio José Colletti Negreiros;
Maria Laura Barberis;
Esmerindo de Sousa Bernardes
|
Orientador: | Luiz Antonio Barrera San Martin |
Resumo | |
Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura (AU) | |
Processo FAPESP: | 02/13020-5 - Geometria complexa em espaços homogêneos |
Beneficiário: | Edson Carlos Licurgo Santos |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |