Busca avançada
Ano de início
Entree


Detecção de anomalias em vídeos de segurança

Texto completo
Autor(es):
Tiago Santana de Nazaré
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Moacir Antonelli Ponti; Jurandy Gomes de Almeida Junior; Adilson Gonzaga; William Robson Schwartz
Orientador: Moacir Antonelli Ponti; Rodrigo Fernandes de Mello
Resumo

Atualmente, câmeras de segurança têm sido amplamente usadas para monitorar espaços públicos, como shoppings, estações de trem e aeroportos. O vídeo gerado por várias dessas câmeras de segurança é monitorado, em tempo real, por um pequeno grupo de pessoas em uma sala de controle para detectar comportamentos anômalos. No entanto, o monitoramento humano é extremamente ineficaz quando se trata de detectar anomalias em vídeos de segurança, principalmente porque tal tarefa é tediosa (na maioria das vezes nada de interessante/anormal acontece) e difícil (uma única pessoa é responsável por monitorar várias câmeras ao mesmo tempo). Tais problemas motivaram a comunidade de visão computacional a desenvolver métodos automatizados para detectar comportamentos incomuns em vídeos de segurança. Apesar dos recentes avanços nessa área, notamos que os atuais métodos de detecção de anomalias em vídeos de segurança têm algumas lacunas como: i) falta de uso de técnicas de remoção/tratamento de ruído ao modelar movimentos usando fluxo óptico; e ii) necessidade de uma abordagem mais adaptativa para lidar com as mudanças de tamanho dos objetos causadas por distorçcões de perspectiva. Motivados por essas questões, propusemos alguns métodos/estudos com o objetivo de melhorar a detecção de anomalias em vídeos de segurança, mantendo (ou reduzindo) o custo computacional. Nossos experimentos mostram que o uso de técnicas simples de filtragem das estimativas de fluxo óptico e scores de anomalias podem melhorar significativamente o desempenho da detecção de anomalias em cenários de vigilância, sem aumentar a complexidade computacional. Além disso, apresentamos um método que automaticamente estima alterações no tamanho do objeto causadas por distorções de perspectiva, o que ajuda a melhorar o desempenho de detecção de anomalias e reduzir o tempo de configuração do sistema de seguraça. Com base nessas descobertas, projetamos um método de detecção de anomalias, que usa somente informações de fluxo óptico, e é capaz de obter resultados de detecção de anomalias muito bons em cenários desafiadores. Além disso, mostramos que um auto-encoder treinado para um cenário específico de vigilância é capaz de alcançar resultados de detecção de anomalias comparáveis aos de features de CNNs pré-treinadas, mesmo tendo uma complexidade computacional significativamente menor (menor número de parâmetros de rede). (AU)

Processo FAPESP: 15/04883-0 - Detecção de eventos não usuais em vídeos de segurança
Beneficiário:Tiago Santana de Nazare
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto