Busca avançada
Ano de início
Entree


Tópicos em otimização cônica não-linear e aplicações

Texto completo
Autor(es):
Leonardo Makoto Mito
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Gabriel Haeser; Jérôme Malick; Patrick Mehlitz; Gabor Pataki; Defeng Sun
Orientador: Gabriel Haeser; Hector Ariel Ramirez Cabrera
Resumo

Esta tese pode ser dividida em três partes: na parte um, nós desenvolvemos novas condições sequenciais de otimalidade para problemas de Otimização Cônica Não-Linear (NCP), que são usadas para estudar a convergência global de algoritmos de modo unificado e simplificado. Na parte dois, nós estendemos a chamada Condição de Qualificação do Posto Constante (CRCQ) e a condição do Posto Constante do Subespaço Componente (CRSC) para o contexto de NCP sobre cones redutíveis, por meio de novas caracterizações geométricas destas condições. Nós as usamos para provar resultados de otimalidade fortes de segunda ordem que melhoram os resultados clássicos obtidos sob a Condição de Qualificação de Robinson, e mostramos como CRSC está relacionada com uma extensão não-linear de uma técnica popular de pré-processamento conhecida como redução facial. Na parte três, nós apresentamos uma abordagem alternativa para estender tanto CRCQ quanto sua variante conhecida como a condição da Dependência Linear Positiva Constante (CPLD), para problemas não-lineares de otimização sobre os cones semidefinido e de segunda ordem. Essas extensões alternativas têm aplicações na teoria de convergência global de uma classe de métodos numéricos para pontos estacionários de segunda ordem. Então, nós incorporamos algumas das ideias apresentadas na parte dois com a extensão de CRCQ da parte três para derivar uma propriedade fraca do tipo posto constante, que modifica a noção de segunda ordem induzida pela condição de Robinson para algo mais aplicável à convergência de algoritmos. (AU)

Processo FAPESP: 17/17840-2 - Estimativas de erro em otimização não linear
Beneficiário:Leonardo Makoto Mito
Modalidade de apoio: Bolsas no Brasil - Doutorado