Busca avançada
Ano de início
Entree


Recuperação de imagens por cor utilizando analise de distribuição discreta de caracteristicas

Texto completo
Autor(es):
Jurandy Gomes de Almeida Junior
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Siome Klein Goldenstein; Agma Juci Machado Traina; Jorge Stolfi
Orientador: Siome Klein Goldenstein; Ricardo da Silva Torres
Resumo

A evolução das tecnologias de aquisição, transmissão e armazenamento de imagens tem permitido a construção dc bancos dc imagens cada vez maiores. À medida em que cresce o volume de imagens nessas coleções, cresce também o intcresse por sistemas capazes de recuperar essas imagens. Essa tarefa tcem sido endereçada pelos sistemas de recuperação de imagens por conteúdo. Nesses sistemas, o conteúdo de uma imagem é descrito a partir de suas características visuais de baixo nível, tais como cor, forma e textura. Um sistema de recuperação de imagens por conteúdo idcal deve ser eficaz e eficiente. A eficácia é resultado de representações abstratas das imagens. Em geral, os métodos que realizam esse processo normalmente falham na presença de diferentes condições de iluminação, oclusão e foco. A eficiência, por outro lado, é resultado da organização dada à essas representações. Em geral, os métodos de agrupamento constituem uma das técnicas mais úteis para diminuir o espaço de busca e acelerar o processamento de uma consulta. Para endereçar a eficácia, este trabalho apresenta o 81FT -Texton, um método capaz de incorporar informações sobre iluminação, oclusão e foco nas características visuais de baixo nível. Esse método baseia-se na distribuição discreta de características invariantes locais e em propriedades de baixo nível das imagens. Em relação às questões de eficiência, este trabalho apresenta o DAH-Cluster, um novo paradigma de agrupamento aplicado à recuperação de imagens por conteúdo. Esse método combina características dos paradigmas hierárquicos divisivo e aglomerativo. Além disso, o DAH-Cluster introduz um novo conceito; chamado fator de reagrupamento, que permite agrupar elementos similares que seriam separados pelos paradigmas tradicionais. Experimentos mostram que a combinação dessas técnicas permite a criação de um mecanismo robusto de recuperação de imagens por conteúdo, atingindo resultados mais eficazes e mais eficientes que as abordagens tradicionais descritas na literatura. As principais contribuições deste trabalho são: (1) um novo método para recuperação de imagens capaz de incorporar informações sobre iluminação, oclusão e foco nas características visuais de baixo nível; e (2) um novo paradigma de agrupamento de dados que pode ser aplicado à recuperação de informação (AU)

Processo FAPESP: 05/52959-3 - Estudo e implementacao de tecnicas de descricao de modelos tridimensionais.
Beneficiário:Jurandy Gomes de Almeida Junior
Modalidade de apoio: Bolsas no Brasil - Mestrado