Busca avançada
Ano de início
Entree


Projeto automático de operadores: explorando conhecimentos a priori

Texto completo
Autor(es):
Nina Sumiko Tomita Hirata
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Orientador: Júnior Barrera
Resumo

A morfologia matemática vem sendo largamente utilizada para processamento e análise de imagens digitais. O projeto de operadores morfológicos é em geral realizado de forma heurística. Devido à dificuldade inerente a este procedimento, técnicas de projeto automático são de grande importância e interesse. Várias abordagens neste sentido vêm sendo propostas, dentre elas técnicas que projetam operadores a partir de exemplos de treinamento (obtidos de amostras de imagens observadas-ideais) que representam de forma simples a transformação desejada pelo usuário. Tomando uma técnica de projeto de operadores baseada no modelo de aprendizado PAC (do inglês, 'Probably Approximately Correct') como ponto de partida, investigamos de forma geral algumas das limitações dessas abordagens. Com base nessa investigação, estudamos o projeto de W-operadores, colocando ênfase sobre questões relacionadas com a precisão de operadores projetados a partir de uma quantidade limitada de exemplos de treinamento. Os frutos deste estudo, apresentamos neste trabalho, são técnicas que exploram conhecimentos sobre o problema que desejamos resolver para projetar operadores mais precisos e algoritmos eficientes para implementar as mesmas. Soluções para problemas reais de processamento de imagens ilustram a aplicação das técnicas propostas (AU)

Processo FAPESP: 98/14328-6 - Projeto de operadores morfologicos binarios.
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Bolsas no Brasil - Doutorado