Busca avançada
Ano de início
Entree


Filtragem distribuída robusta para redes de sensores sujeitas à incertezas paramétricas

Texto completo
Autor(es):
Kaio Douglas Teofilo Rocha
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Data de defesa:
Membros da banca:
Marco Henrique Terra; Daniel Ferreira Coutinho; José Claudio Geromel; João Yoshiyuki Ishihara; Tiago Roux de Oliveira
Orientador: Marco Henrique Terra
Resumo

Nos últimos anos, tem-se testemunhado a rápida popularização de sistemas multiagentes cooperativos em rede, que consistentemente tendem a se tornar onipresentes em nossa sociedade. Sendo um dos exemplos mais bem estabelecidos de tais sistemas, as redes de sensores têm sido aplicadas a sistemas cada vez mais complexos, exigindo tecnologias cada vez mais robustas, eficientes e confiáveis. A estimação distribuída de estado é a tarefa mais fundamental que podemos realizar com essas redes. O principal objetivo desta tese é desenvolver estratégias robustas de filtragem distribuída para redes de sensores aplicadas a sistemas lineares em tempo discreto sujeitos a incertezas paramétricas. Especificamente, consideram-se dois tipos de incertezas: limitadas em norma e politópicas. Para atingir esse objetivo, outros problemas relacionados também são abordados, divididos em duas categorias. A primeira categoria de problemas refere-se à tarefa de estimativa de estado baseada em um único sensor. Dentro dessa categoria, considera-se o cenário em que os modelos são perfeitamente conhecidos, assim como os em que eles são sujeitos a cada um dos dois tipos de incerteza. São propostos filtros nominais e robustos para cada situação. A segunda categoria diz respeito às redes com múltiplos sensores, considerando os mesmos três cenários. Para cada um, são propostos estimadores centralizados e distribuídos. O algoritmo de consenso é utilizado para obter-se os filtros distribuídos, que aproximam suas versões centralizadas correspondentes. Os filtros propostos são baseados no célebre filtro de Kalman e apresentam uma estrutura recursiva semelhante e relativamente simples. O desempenho dos estimadores propostos é avaliado por meio de exemplos de aplicação, sendo também comparados com estratégias existentes na literatura relacionada. (AU)

Processo FAPESP: 17/16346-4 - Controle tolerante a falhas de rede de comunicação para o movimento coordenado de robôs heterogêneos
Beneficiário:Kaio Douglas Teófilo Rocha
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto