Busca avançada
Ano de início
Entree


Dimensão de atratores associados a sistemas dinâmicos autônomos e não-autônomos

Texto completo
Autor(es):
Rafael de Oliveira Moura
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Alexandre Nolasco de Carvalho; Everaldo de Mello Bonotto; Jaqueline Godoy Mesquita; José Antonio Langa Rosado
Orientador: Alexandre Nolasco de Carvalho
Resumo

Esta tese explora as propriedades dimensionais de atratores em sistemas dinâmicos, oferecendo avanços teóricos e aplicações em contextos autônomos e não-autônomos. É apresentado um arcabouço abrangente para a análise de processos de evolução, atratores pullback e atratores uniformes, fornecendo ferramentas para o estudo do comportamento assintótico em equações diferenciais parciais e ordinárias. As contribuições incluem estimativas aprimoradas de dimensão para atratores uniformes, extensões do Teorema de Imersão de Mañé e o desenvolvimento de técnicas de redução de dimensão para espaços de Hilbert finito-dimensionais. Os principais resultados incluem uma generalização das estimativas de dimensão fractal para atratores uniformes, eliminando a suposição de espaços de símbolos finito-dimensionais ao utilizar propriedades de compacidade assintótica. Aplicações a equações parabólicas semilineares demonstram a relevância prática desses resultados, estabelecendo que sistemas com espaços de símbolos infinito-dimensionais ainda podem apresentar atratores finito-dimensionais. Além disso, a interação entre a dimensão fractal e a teoria de variedades inerciais é explorada, revelando abordagens complementares para a imersão de atratores em espaços finito-dimensionais com diferentes regularidades. Este trabalho abre caminhos para conectar as abordagens de dimensão fractal e de análise espectral, refinar estimativas de dimensão e aprimorar nossa compreensão da estrutura geométrica e espectral de atratores em sistemas dinâmicos. Esses achados fornecem uma base matemática mais profunda para aplicações em ciência e engenharia, ampliando o alcance da teoria de sistemas dinâmicos. (AU)

Processo FAPESP: 22/04886-2 - Dimensão dos atratores associados a sistemas dinâmicos autônomos e não-autônomos
Beneficiário:Rafael de Oliveira Moura
Modalidade de apoio: Bolsas no Brasil - Doutorado