Algoritmos para genômica comparativa de culturas e outras plantas com flores
Sobre a Mediana Relativa à Distância de Posto de 3 Permutações
O problema da ordenação de permutações usando operações de prefixo e sufixo
![]() | |
Autor(es): |
Zanoni Dias
Número total de Autores: 1
|
Tipo de documento: | Tese de Doutorado |
Imprenta: | Campinas, SP. |
Instituição: | Universidade Estadual de Campinas (UNICAMP). Instituto de Computação |
Data de defesa: | 2002-11-14 |
Membros da banca: |
João Meidanis;
Maria Emilia Machado Telles Walter;
José Augusto Ramos Soares;
Ricardo Dahab;
Pedro Jussieu de Rezende
|
Orientador: | João Meidanis |
Resumo | |
Hoje em dia, estão disponíveis, publicamente, uma imensa quantidade de informações genéticas. O desafio atual da Genômica é processar estes dados de forma a obter conclusões biológicas relevantes. Uma das maneiras de estruturar estas informações é através de comparação de genomas, que busca semelhanças e diferenças entre os genomas de dois ou mais organismos. Neste contexto, a área de Rearranjo de Genomas vem recebendo bastante atenção ultimamente. Uma forma de comparar genomas é através da distância de rearranjo, determinada pelo número mínimo de eventos de rearranjo que podem explicar as diferenças entre dois genomas. Os principais estudos em distância de rearranjo envolvem eventos de reversões e transposições. A presente coletânea é composta de oito artigos, contendo vários resultados importantes sobre Rearranjo de Genomas. Estes trabalhos foram apresentados em seis conferências, sendo uma nacional e cinco internacionais. Dois destes trabalhos serão publicados em importantes revistas internacionais e outro foi incluído como um capítulo de um livro. Nossas principais contribuições podem ser divididas em dois grupos: um novo formalismo algébrico e uma série de resultados envolvendo o evento de transposição. A nova teoria algébrica relaciona a teoria de Rearranjo de Genomas com a de grupos de permutações. Nossa intenção foi estabelecer um formalismo algébrico que simplificasse a obtenção de novos resultados, até hoje, muito baseados na construção de diagramas. Estudamos o evento de transposição de várias formas. Além de apresentarmos resultados sobre a distância de transposição entre uma permutação e sua inversa, também estudamos o problema de rearranjo envolvendo transposições e reversões simultaneamente, construindo algoritmos de aproximação e estabelecendo uma conjectura sobre o diâmetro. Usamos o formalismo algébrico para mostrar que é possível determinar a distância de fusão, fissão e transposição em tempo polinomial. Este é o primeiro resultado polinomial conhecido para um problema de rearranjo envolvendo o evento de transposição. Por último, introduzimos dois novos problemas de rearranjo: o problema de distância sintênica envolvendo fusões e fissões, e o problema de transposição de prefixos. Para ambos apresentamos resultados significativos, que avançam o conhecimento na área (AU) | |
Processo FAPESP: | 98/04432-0 - Rearranjo de genomas. |
Beneficiário: | Zanoni Dias |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |