Busca avançada
Ano de início
Entree


Modelos multivariados binários com funções de ligação assimétricas

Texto completo
Autor(es):
Rafael Braz Azevedo Farias
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Data de defesa:
Membros da banca:
Marcia D Elia Branco; Jorge Luis Bazán Guzmán; Rosângela Helena Loschi; Reinaldo Boris Arellano Valle
Orientador: Marcia D Elia Branco
Resumo

Conjuntos de dados com respostas multivariadas aparecem frequentemente em pesquisas em que os dados são provenientes de questionários. Exemplos mais comuns são pesquisas de opinião, mais especificamente, pesquisas de marketing em que a preferência do consumidor em potencial é avaliado: pelo produto, marca, preço, praça, promoção e etc. Um tipo pesquisa de opinião que ganha grande destaque no Brasil de dois em dois anos são as pesquisas eleitorais de intenção de votos. Nós introduzimos nesta tese uma classe de modelos de regressão multivariados com funções de ligação assimétricas para o ajuste de conjuntos de dados com respostas multivariadas binárias. As funções de ligação consideradas são bastante flexíveis e robustas, contemplando funções de ligação simétricas como casos particulares. Devido a complexidade do modelo, nós discutimos a sua identificabilidade. A abordagem Bayesiana foi considerada e alguns algoritmos de Monte Carlo via Cadeia de Markov (MCMC) foram desenvolvidos. Nós descrevemos algumas ferramentas de seleção de modelos, os quais incluem o Critério de Informação da Deviance (DIC), a Pseudo-Verossimilhança Marginal e o Pseudo-Fator de Bayes. Adicionalmente, um estudo de simulação foi desenvolvido com dois objetivos; i) verificar a qualidade dos algoritmos desenvolvidos e ii) verificar a importância da escolha da função de ligação . No final da tese uma aplicação em um conjunto de dados real é considerada com o objetivo de ilustrar as metodologias e técnicas apresentadas. (AU)

Processo FAPESP: 07/03598-3 - Análise bayesiana em modelos probito-assimétricos multivariados
Beneficiário:Rafael Bráz Azevedo Farias
Modalidade de apoio: Bolsas no Brasil - Doutorado