Busca avançada
Ano de início
Entree


Uma versão parametrizada do teorema de Borsuk-Ulam

Texto completo
Autor(es):
Nelson Antonio Silva
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Denise de Mattos; Thiago de Melo; Pedro Luiz Queiroz Pergher
Orientador: Denise de Mattos
Resumo

O teorema clássico de Borsuk-Ulam nos dá informações à respeito de aplicações \'S POT. n\' \'SETA\' \'R POT. n\', no qual \'S POT. n\' é um \'Z IND. 2\' -espaço livre. O teorema afirma que existe pelo menos uma órbita que é enviada em um único ponto em \'R POT. n\'. Dold [9] estendeu este problema para o contexto de fibrados, considerando aplicações f : S (E) \'SETA\' \'E POT. \'prime\'\' nos quais preservam fibras; aqui, S (E) denota o espaço total do fibrado em esfera sobre B associado ao fibrado vetorial E \'SETA\' B e \'E POT. \'prime\'\' \'SETA\' B é o outro fibrado vetorial. O objetivo desse trabalho é provar esta versão do teorema de Borsuk-Ulam obtida por Dold, chamada versão parametrizada do teorema de Borsuk-Ulam. Nós também provamos uma versão cohomológica deste problema (AU)

Processo FAPESP: 08/07198-2 - Uma versão parametrizada do Teorema de Borsuk-Ulam
Beneficiário:Nelson Antonio Silva
Modalidade de apoio: Bolsas no Brasil - Mestrado