Busca avançada
Ano de início
Entree


Incluindo funções de distância e extratores de características para suporte a consultas por similaridade

Texto completo
Autor(es):
Marcos Vinícius Naves Bêdo
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Caetano Traina Junior; Sandra Aparecida de Amo; Paulo Mazzoncini de Azevedo Marques
Orientador: Caetano Traina Junior
Resumo

Sistemas Gerenciadores de Bases de Dados Relacionais (SGBDR) são capazes de lidar com um alto volume de dados. As consultas nestes sistemas são realizados a partir da relação de ordem total, domínio sob o qual estão definidos dados simples como números ou strings, por exemplo. No caso de dados complexos, como imagens médicas, áudio ou séries-temporais financeiras que não obedecem as propriedade da relação acima citada e necessária uma abordagem que seja capaz de realizar a recuperação por conteúdo destes dados em tempo hábil e com semântica adequada. Nesse sentido, a literatura nos apresenta, como paradigma consolidado, as consultas por similaridade. Esse paradigma e a base para o funcionamento de muitos aplicativos de auxílio a tomada de decisão pelo especialista como Recuperação de Imagens Médicas por Conteúdo (CBMIR) e Recuperação de Áudio por Conteúdo (CBAR) e inclui diversas sub-áreas de pesquisa tais como extratores de características, funções de distância e métodos de acesso métrico. O desenvolvimento de novos métodos extratores de características e novas funções de distância são de fundamental importância para a diminuição do gap semântico entre os aplicativos e usuários, enquanto os métodos de acesso métricos são os reponsáveis diretos pela rápida resposta dos sistemas. Integrar todas essas funcionalidades em um framework de suporte a consultas por similaridade dentro de um SGBDR permanece um grande desafio. Esse trabalho objetiva estender uma proposta inicial dos recursos disponíveis no SIREN, inserindo novos extratores de características e funções de distância para imagens médicas e séries-temporais financeiras transformando-o em um framework, de forma que seus componentes possam ser utilizados via comandos Structured Query Language (SQL). Os resultados poderão ser diretamente utilizados por aplicativos de auxílio a tomada de decisão pelo especialista (AU)

Processo FAPESP: 11/05301-3 - Incluindo funções de distância e extratores de características em SGBD para suporte a consultas por similaridade
Beneficiário:Marcos Vinicius Naves Bêdo
Modalidade de apoio: Bolsas no Brasil - Mestrado