Busca avançada
Ano de início
Entree


Caos e controle em sistemas mecânicos com impactos

Texto completo
Autor(es):
Silvio Luiz Thomaz de Souza
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Data de defesa:
Membros da banca:
Ibere Luiz Caldas; Thomas Braun; Celso Grebogi; Ricardo Luiz Viana; Hans Ingo Weber
Orientador: Ibere Luiz Caldas
Resumo

Inicialmente, analisamos três sistemas mecânicos idéias com impactos: um oscilador com impactos, um sistema com par de impactos e uma caixa de engrenagens. Entre os impactos, o movimento é descrito por uma equação diferencial linear. Por ocasião dos impactos, introduzimos na solução analítica novas condições iniciais, de acordo com a lei de Newton para impactos. Devidos aos impactos, as trajetórias no espaço de fase são descontínuas e descritas por um mapa transcendental. Os expoentes de Lyapunov, importantes para caracterizar a natureza dos atratores obtidos, são calculados através desses mapas. Nas simulações numéricas, observamos fenômenos não-lineares como crises, intermitências, transientes caóticos e coexistências de atratores e obtemos as bacias de atração dos atratores coexistentes. Ademais, mostramos como controlar comportamentos caóticos, a partir de um forçamento de amplitude pequena, e pelo método OGY (Ott, Grebogi e Yorke) de controle de caos. Finalmente, investigamos a dinâmica de um sistema não-ideal com impactos, que é composto pelo sistema de par de impactos sobreposto ao um sistema não ideal (para qual a ação da fonte de energia depende da oscilação do sistema). A partir de simulações numéricas, identificamos fenômenos não-lineares como crise interior, intermitência e coexistência de atratores. Associado à crise interior observamos um tipo de intermitência que leva o sistema a oscilar entre três atratores caóticos. Além dessa intermitência, observamos uma outra, que envolve dois atratores periódicos e um caótico. Além disso, mostramos as bacias de atração de dois atratores periódicos coexistentes. Essas bacias possuem uma característica de bacia crivada. (AU)

Processo FAPESP: 97/13936-0 - Caos e controle em sistemas mecânicos com impactos
Beneficiário:Silvio Luiz Thomaz de Souza
Modalidade de apoio: Bolsas no Brasil - Doutorado