Advanced search
Start date
Betweenand


Chaos and control in mechanical systems with impacts.

Full text
Author(s):
Silvio Luiz Thomaz de Souza
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Ibere Luiz Caldas; Thomas Braun; Celso Grebogi; Ricardo Luiz Viana; Hans Ingo Weber
Advisor: Ibere Luiz Caldas
Abstract

Initially, we analyze three ideal mechanical systems with impacts: an impact oscilator, an impact-pair, and a gear-box (gear-rattling). Between impacts, the motion is described by a linear differential equation. After each impact, we use the Newton law of impact to determine new initial conditions of an analytical solution. Due to impacts, the trajectories in phase space are discontinuous and described by a transcendental map. The Lyapunov exponents, important to characterize the attractors, are calculated from the transcendental map. In the numerical simulations, we observe nonlinear phenomena as crises, intermittency, chaotic behavior, and coexisting attractors. Moreover, we present the basins of attraction of the coexisting attractors. Furthermore, we show how to control the chaotic behavior, with a small perturbation and by the OGY (Ott, Grebogi, and Yorke) method. Finally, we investigate the dynamics of a non-ideal system with impacts, that is composed by an impact-pair system on a non-ideal system (in this system, the energy source actions depend on the system oscillations). From the numerical simulations, we identify nonlinear phenomena as interior crises, intermittency, for which the system oscillates among three chaotic attractors. Besides this intermittency, we observe another one. Associated to a chaotic and two periodic attractors. In addition, we show the riddle basins of attraction of the two coexisting periodic attractors. (AU)