Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Empirical and analytical approaches for web server power modeling

Texto completo
Autor(es):
Piga, Leonardo [1] ; Bergamaschi, Reinaldo A. [1] ; Rigo, Sandro [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Cluster Computing-The Journal of Networks Software Tools and Applications; v. 17, n. 4, p. 1279-1293, DEC 2014.
Citações Web of Science: 2
Resumo

Power-aware computing has emerged as a significant concern in data centers. In this work, we develop empirical models for estimating the power consumed by web servers. These models can be used by on-the-fly power-saving algorithms and are imperative for simulators that evaluate the power behavior of workloads. To apply power saving methodologies and algorithms at the data center level, we must first be able to measure or estimate the power and performance of individual servers running in the data centers. We show a novel method for developing full system web server power models that reduces non-linear relationships among performance measurements and system power and prunes model parameters. The web server power models use as parameters performance indicators read from the machine internal performance counters. We evaluate our approach on an AMD Opteron-based web server and on an Intel i7-based web sever. Our best model displays an average absolute error of 1.92 % for Intel i7 server and 1.46 % for AMD Opteron as compared to actual measurements, and 90th percentile for the absolute percent error equals to 2.66 % for Intel i7 and 2.08 % for AMD Opteron. (AU)

Processo FAPESP: 10/05389-5 - Análise e modelamento de potência e desempenho em servidores de centro de dados
Beneficiário:Leonardo de Paula Rosa Piga
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto