Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Estimating determinism rates to detect patterns in geospatial datasets

Texto completo
Autor(es):
Rios, Ricardo Araujo [1] ; Parrott, Lael [2] ; Lange, Holger [3] ; de Mello, Rodrigo Fernandes [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP - Brazil
[2] Univ British Columbia, Kelowna, BC V1V 1V7 - Canada
[3] Norwegian Forest & Landscape Inst, N-1431 As - Norway
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: REMOTE SENSING OF ENVIRONMENT; v. 156, p. 11-20, JAN 2015.
Citações Web of Science: 5
Resumo

The analysis of temporal geospatial data has provided important insights into global vegetation dynamics, particularly the interaction among different variables such as precipitation and vegetation indices. Nevertheless, this analysis is not a straightforward task due to the complex relationships among different systems driving the dynamics of the observed variables. Aiming at automatically extracting information from temporal geospatial data, we propose a new approach to detect stochastic and deterministic patterns embedded into time series and illustrate its effectiveness through an analysis of global geospatial precipitation and vegetation data captured over a 14 year period. By knowing such patterns, we can find similarities in the behavior of different systems even if these systems are characterized by different dynamics. In addition, we developed a novel determinism measure to evaluate the relative contribution of stochastic and deterministic patterns in a time series. Analyses showed that this measure permitted the detection of regions on the global map where the radiation absorbed by the vegetation and the incidence of rain occur with similar patterns of stochasticity. The methods developed in this study are generally applicable to any spatiotemporal data set and may be of particular interest for the analysis of the vast amount of remotely sensed geospatial data currently being collected routinely as part of national and international monitoring programs. (C) 2014 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 11/02655-9 - Análise de influências provenientes da tomada de decisões centralizadas e distribuídas no escalonamento de processos
Beneficiário:Rodrigo Fernandes de Mello
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 09/18293-9 - Uma Abordagem Híbrida para Identificação e Modelagem de Componentes Estocásticos e Determinísticos presentes em Séries Temporais
Beneficiário:Ricardo Araújo Rios
Modalidade de apoio: Bolsas no Brasil - Doutorado