Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Topological-collaborative approach for disambiguating authors' names in collaborative networks

Texto completo
Autor(es):
Amancio, Diego R. [1] ; Oliveira, Jr., Osvaldo N. [2] ; Costa, Luciano da F. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: SCIENTOMETRICS; v. 102, n. 1, p. 465-485, JAN 2015.
Citações Web of Science: 5
Resumo

Concepts and methods of complex networks have been employed to uncover patterns in a myriad of complex systems. Unfortunately, the relevance and significance of these patterns strongly depends on the reliability of the datasets. In the study of collaboration networks, for instance, unavoidable noise pervading collaborative networks arises when authors share the same name. To address this problem, we derive a hybrid approach based on authors' collaboration patterns and topological features of collaborative networks. Our results show that the combination of strategies, in most cases, performs better than the traditional approach which disregards topological features. We also show that the main factor accounting for the improvement in the discriminability of homonymous authors is the average shortest path length. Finally, we show that it is possible to predict the weighting associated to each strategy compounding the hybrid system by examining the discrimination obtained from the traditional analysis of collaboration patterns. Because the methodology devised here is generic, our approach is potentially useful to classify many other networked systems governed by complex interactions. (AU)

Processo FAPESP: 13/06717-4 - Modelagem do conhecimento e comportamento com redes complexas
Beneficiário:Diego Raphael Amancio
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 11/50761-2 - Modelos e métodos de e-Science para ciências da vida e agrárias
Beneficiário:Roberto Marcondes Cesar Junior
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 10/00927-9 - Classificação de textos com redes complexas
Beneficiário:Diego Raphael Amancio
Linha de fomento: Bolsas no Brasil - Doutorado Direto