Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

Texto completo
Freitas, Celso [1] ; Macau, Elbert [1] ; Pikovsky, Arkady [2, 3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Brazilian Natl Inst Space Res INPE, Associate Lab Comp & Appl Math LAC, Sao Paulo - Brazil
[2] Nizhnii Novgorod State Univ, Dept Control Theory, Nizhnii Novgorod 606950 - Russia
[3] Univ Potsdam, Dept Phys & Astron, Potsdam - Germany
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Chaos; v. 25, n. 4 APR 2015.
Citações Web of Science: 5

We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones. (C) 2015 AIP Publishing LLC. (AU)

Processo FAPESP: 11/50151-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Linha de fomento: Auxílio à Pesquisa - Temático