Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, Dept Math, BR-13083859 Campinas, SP - Brazil
[2] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo - Italy
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 434, p. 115-137, JUL 15 2015. |
Citações Web of Science: | 9 |
Resumo | |
Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G. We study combinatorial and asymptotic properties of the G-graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is ``very large{''}. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G-graded algebra in the variety generated by A. We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtained by the corresponding multipartition after removing its first row. We relate, moreover, the polynomial growth to the colengths. Finally we describe in detail the algebras whose graded codimensions are of linear growth. (C) 2015 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 14/09310-5 - Estruturas algébricas e suas representações |
Beneficiário: | Vyacheslav Futorny |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 14/07021-6 - Variedades mínimas de crescimento polinomial |
Beneficiário: | Plamen Emilov Kochloukov |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |