Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A semi-implicit finite element method for viscous lipid membranes

Texto completo
Autor(es):
Rodrigues, Diego S. [1] ; Ausas, Roberto F. [1] ; Mut, Fernando [1] ; Buscaglia, Gustavo C. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Computational Physics; v. 298, p. 565-584, OCT 1 2015.
Citações Web of Science: 9
Resumo

A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme (Codina and Blasco (1997) {[}33]), the second couples curvature and velocity to improve temporal stability, as proposed by Bansch (2001) {[}36]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method. (C) 2015 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 12/14481-8 - Aproximação numérica de interfaces microfluídicas com acoplamento mecânico-bioquímico
Beneficiário:Gustavo Carlos Buscaglia
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/23383-0 - Desafios de computação científica para hemodinâmica macroscópica e microscópica
Beneficiário:Fernando Mut
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 14/19249-1 - Fluidodinâmica computacional de interfaces complexas: aplicações ao estudo das emulsões e da micromecânica de membranas biológicas
Beneficiário:Roberto Federico Ausas
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 11/01800-5 - Tratamento numérico de fenômenos microscópicos em fluidodinâmica
Beneficiário:Diego Samuel Rodrigues
Modalidade de apoio: Bolsas no Brasil - Doutorado