Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A comparison between robust and risk-based optimization under uncertainty

Texto completo
Autor(es):
Beck, Andre T. [1] ; Gomes, Wellison J. S. [2] ; Lopez, Rafael H. [2] ; Miguel, Leandro F. F. [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Struct Engn, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Fed Santa Catarina, Dept Civil Engn, Florianopolis, SC - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION; v. 52, n. 3, p. 479-492, SEP 2015.
Citações Web of Science: 19
Resumo

Robust optimization aims at producing designs which are less sensitive to uncertainties. Risk optimization looks for designs with optimal balance between performance and safety. In spite of the different objectives, robust and risk-based formulations have strong similitude, which has not been thoroughly explored before. This paper explores the similarities and differences between these formulations. It is shown that the alpha factors, which are employed in compromise solutions in robust optimization, are equivalent to the costs of failure in risk-based optimization. Moreover, it is shown that the robust objective function is often non-convex, with results being given by (often arbitrary) design constraints. In some sense, the robust objective function lacks objectiveness, with results largely dependent on arbitrary normalizing constants. On the other hand, when there is a critical limit to performance, which characterizes system failure, and when costs of failure can be defined, the risk-based optimization yields consistent results, and no normalizing constants are needed. (AU)

Processo FAPESP: 12/21357-1 - Otimização de riscos: desenvolvimento e aplicações
Beneficiário:André Teófilo Beck
Modalidade de apoio: Auxílio à Pesquisa - Regular