Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Scenario tree reduction in stochastic programming with recourse for hydropower operations

Texto completo
Autor(es):
Xu, Bin [1, 2, 3] ; Zhong, Ping-An [2, 3] ; Zambon, Renato C. [4] ; Zhao, Yunfa [5] ; Yeh, William W. -G. [1, 6]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 - USA
[2] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu - Peoples R China
[3] Hohai Univ, Natl Engn Res Ctr Water Resources Efficient Utili, Nanjing, Jiangsu - Peoples R China
[4] Univ Sao Paulo, Dept Hydraul & Environm Engn, Polytech Sch, Sao Paulo - Brazil
[5] China Three Gorges Corp, Beijing - Peoples R China
[6] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA - USA
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: WATER RESOURCES RESEARCH; v. 51, n. 8, p. 6359-6380, AUG 2015.
Citações Web of Science: 15
Resumo

A stochastic programming with recourse model requires the consequences of recourse actions be modeled for all possible realizations of the stochastic variables. Continuous stochastic variables are approximated by scenario trees. This paper evaluates the impact of scenario tree reduction on model performance for hydropower operations and suggests procedures to determine the optimal level of scenario tree reduction. We first establish a stochastic programming model for the optimal operation of a cascaded system of reservoirs for hydropower production. We then use the neural gas method to generate scenario trees and employ a Monte Carlo method to systematically reduce the scenario trees. We conduct in-sample and out-of-sample tests to evaluate the impact of scenario tree reduction on the objective function of the hydropower optimization model. We then apply a statistical hypothesis test to determine the significance of the impact due to scenario tree reduction. We develop a stochastic programming with recourse model and apply it to real-time operation for hydropower production to determine the loss in solution accuracy due to scenario tree reduction. We apply the proposed methodology to the Qingjiang cascade system of reservoirs in China. The results show: (1) the neural gas method preserves the mean value of the original streamflow series but introduces bias to variance, cross variance, and lag-one covariance due to information loss when the original tree is systematically reduced; (2) reducing the scenario number by as much as 40% results in insignificant change in the objective function and solution quality, but significantly reduces computational demand. (AU)

Processo FAPESP: 13/03432-9 - Otimização estocástica a usinas individualizadas do planejamento da operação do sistema hidrotérmico brasileiro
Beneficiário:Renato Carlos Zambon
Modalidade de apoio: Bolsas no Exterior - Pesquisa