Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Reverse enGENEering of Regulatory Networks from Big Data: A Road map for Biologists

Texto completo
Autor(es):
Dong, Xiaoxi [1] ; Yambartsev, Anatoly [2] ; Ramsey, Stephen A. [3, 4] ; Thomas, Lina D. [2] ; Shulzhenko, Natalia [4] ; Morgun, Andrey [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Oregon State Univ, Coll Pharm, Corvallis, OR 97331 - USA
[2] Univ Sao Paulo, Inst Math & Stat, Dept Stat, Sao Paulo, SP - Brazil
[3] Oregon State Univ, Dept Biomed Sci, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 - USA
[4] Oregon State Univ, Coll Vet Med, Dept Biomed Sci, Corvallis, OR 97331 - USA
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: BIOINFORMATICS AND BIOLOGY INSIGHTS; v. 9, p. 61-74, 2015.
Citações Web of Science: 12
Resumo

Ornics technologies enable unbiased ins investigation of biological systems through massively parallel sequence acquisition or molecular measurements, bringing the life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to transform these data into biological knowledge, for example, how to use these data to answer questions such as: Which functional pathways are involved in cell differentiation? Which genes should we target to stop cancer? Network analysis is a powerful and general approach to solve this problem consisting of two fundamental stages. network reconstruction, and network interrogation. Here we provide an overview of network analysis including a step-by-step guide on how to perform and use this approach to investigate a biological question. In this guide, we also include the software packages that we and others employ for each of the steps of a network analysis workflow. (AU)

Processo FAPESP: 13/06223-1 - Novas inferências estatísticas explorando mudanças causais em redes biológicas
Beneficiário:Lina Dornelas Thomas
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/14722-8 - Estudo de mudanças nas redes de coexpressão gênica
Beneficiário:Lina Dornelas Thomas
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado