Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Exploring NK fitness landscapes using imitative learning

Texto completo
Autor(es):
Fontanari, Jose F.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: European Physical Journal B; v. 88, n. 10 OCT 7 2015.
Citações Web of Science: 10
Resumo

The idea that a group of cooperating agents can solve problems more efficiently than when those agents work independently is hardly controversial, despite our obliviousness of the conditions that make cooperation a successful problem solving strategy. Here we investigate the performance of a group of agents in locating the global maxima of NK fitness landscapes with varying degrees of ruggedness. Cooperation is taken into account through imitative learning and the broadcasting of messages informing on the fitness of each agent. We find a trade-off between the group size and the frequency of imitation: for rugged landscapes, too much imitation or too large a group yield a performance poorer than that of independent agents. By decreasing the diversity of the group, imitative learning may lead to duplication of work and hence to a decrease of its effective size. However, when the parameters are set to optimal values the cooperative group substantially outperforms the independent agents. (AU)

Processo FAPESP: 13/17131-0 - Estudos no modelo de Axelrod: transições de fase de não-equilíbrio, difusão de inovações, e computação coletiva
Beneficiário:José Fernando Fontanari
Modalidade de apoio: Auxílio à Pesquisa - Regular