Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Strong-randomness phenomena in quantum Ashkin-Teller models

Texto completo
Autor(es):
Barghathi, Hatem [1] ; Hrahsheh, Fawaz [1, 2, 3] ; Hoyos, Jose A. [4] ; Narayanan, Rajesh [5] ; Vojta, Thomas [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 - USA
[2] Jordan Univ Sci & Technol, Dept Phys, Irbid 22110 - Jordan
[3] King Fahd Univ Petr & Minerals, Dhahran 31261 - Saudi Arabia
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo - Brazil
[5] Indian Inst Technol Madras, Dept Phys, Madras 600036, Tamil Nadu - India
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICA SCRIPTA; v. T165, OCT 2015.
Citações Web of Science: 7
Resumo

The N-color quantum Ashkin-Teller spin chain is a prototypical model for the study of strong-randomness phenomena at first-order and continuous quantum phase transitions. In this paper, we first review the existing strong-disorder renormalization group approaches to the random quantum Ashkin-Teller chain in the weak-coupling as well as the strong-coupling regimes. We then introduce a novel general variable transformation that unifies the treatment of the strong-coupling regime. This allows us to determine the phase diagram for all color numbers N, and the critical behavior for all N not equal 4. In the case of two colors, N = 2, a partially ordered product phase separates the paramagnetic and ferromagnetic phases in the strong-coupling regime. This phase is absent for all N > 2, i.e., there is a direct phase boundary between the paramagnetic and ferromagnetic phases. In agreement with the quantum version of the Aizenman-Wehr theorem, all phase transitions are continuous, even if their clean counterparts are of first order. We also discuss the various critical and multicritical points. They are all of infinite-randomness type, but depending on the coupling strength, they belong to different universality classes. (AU)

Processo FAPESP: 13/09850-7 - Disorder, Dynamics, Frustration and Topology in Quantum Condensed Matter
Beneficiário:José Abel Hoyos Neto
Modalidade de apoio: Auxílio à Pesquisa - Reunião - Exterior