Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

H-infinity and H-2 control design for polytopic continuous-time Markov jump linear systems with uncertain transition rates

Texto completo
Autor(es):
Morais, Cecilia F. [1] ; Braga, Marcio F. [1] ; Oliveira, Ricardo C. L. F. [1] ; Peres, Pedro L. D. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Sch Elect & Comp Engn, Av Albert Einstein 400, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL; v. 26, n. 3, p. 599-612, FEB 1 2016.
Citações Web of Science: 14
Resumo

This paper investigates the problems of H-infinity and H-2 state feedback control design for continuous-time Markov jump linear systems. The matrices of each operation mode are supposed to be uncertain, belonging to a polytope, and the transition rate matrix is considered partly known. By appropriately modeling all the uncertain parameters in terms of a multi-simplex domain, new design conditions are proposed, whose main advantage with respect to the existing ones is to allow the use of polynomially parameter-dependent Lyapunov matrices to certify the mean square closed-loop stability. Synthesis conditions are derived in terms of matrix inequalities with a scalar parameter. The conditions, which become LMIs for fixed values of the scalar, can cope with H-infinity and H-2 state feedback control in both mode-independent and mode-dependent cases. Using polynomial Lyapunov matrices of larger degrees and performing a search for the scalar parameter, less conservative results in terms of guaranteed costs can be obtained through LMI relaxations. Numerical examples illustrate the advantages of the proposed conditions when compared with other techniques from the literature. Copyright (C) 2015 John Wiley \& Sons, Ltd. (AU)

Processo FAPESP: 11/08312-6 - Discretização e Controle por Rede de Sistemas Politópicos com Taxa de Amostragem Incerta e Atraso
Beneficiário:Marcio Feliciano Braga
Modalidade de apoio: Bolsas no Brasil - Doutorado