Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Classification of Color Images of Dermatological Ulcers

Texto completo
Autor(es):
Pereira, Silvio M. [1] ; Frade, Marco A. C. [2] ; Rangayyan, Rangaraj M. [3] ; Azevedo-Marques, Paulo M. [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Sch Engn, BR-13566590 Sao Paulo - Brazil
[2] Univ Sao Paulo, Sch Med Ribeirao Preto, BR-14048900 Sao Paulo - Brazil
[3] Univ Calgary, Schulich Sch Engn, Calgary, AB T2N 1N4 - Canada
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS; v. 17, n. 1, p. 136-142, JAN 2013.
Citações Web of Science: 11
Resumo

We present color image processing methods for the analysis of images of dermatological lesions. The focus of this study is on the application of feature extraction and selection methods for classification and analysis of the tissue composition of skin lesions or ulcers, in terms of granulation (red), fibrin (yellow), necrotic (black), callous (white), and mixed tissue composition. The images were analyzed and classified by an expert dermatologist into the classes mentioned previously. Indexing of the images was performed based on statistical texture features derived from cooccurrence matrices of the red, green, and blue (RGB), hue, saturation, and intensity (HSI), L{*}a{*}b{*}, and L{*}u{*}v{*} color components. Feature selection methods were applied using the Wrapper algorithm with different classifiers. The performance of classification was measured in terms of the percentage of correctly classified images and the area under the receiver operating characteristic curve, with values of up to 73.8% and 0.82, respectively. (AU)

Processo FAPESP: 07/02144-9 - Recuperacao de imagens a partir de conteudos (cbir): um estudo de caracterizacao de lesoes dermatologicas para auxilio ao diagnostico na rotina clinica.
Beneficiário:Éderson Antônio Gomes Dorileo
Modalidade de apoio: Bolsas no Brasil - Mestrado