Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Equations of motion for variational electrodynamics

Texto completo
Autor(es):
De Luca, Jayme
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 260, n. 7, p. 5816-5833, APR 5 2016.
Citações Web of Science: 0
Resumo

We extend the variational problem of Wheeler-Feynman electrodynamics by generalizing the electromagnetic functional to a local space of absolutely continuous trajectories possessing a derivative (velocities) of bounded variation. We show here that the Gateaux derivative of the generalized functional defines two partial Lagrangians for variations in our generalized local space, one for each particle. We prove that the critical-point conditions of the generalized variational problem are: (i) the Euler-Lagrange equations must hold Lebesgue-almost-everywhere and (ii) the momentum of each partial Lagrangian and the Legendre transform of each partial Lagrangian must be absolutely continuous functions, generalizing the Weierstrass-Erdmann conditions. (C) 2015 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 11/18343-6 - Eletrodinâmica variacional
Beneficiário:Jayme Vicente de Luca Filho
Modalidade de apoio: Auxílio à Pesquisa - Regular