Construções de topologias: grupos topológicos enumeravelmente compactos, hiperespa...
Aspectos de enfraquecimentos de normalidade, compacidade e de combinatória infinit...
Texto completo | |
Autor(es): |
Spadaro, S.
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | ACTA MATHEMATICA HUNGARICA; v. 149, n. 1, p. 254-262, JUN 2016. |
Citações Web of Science: | 1 |
Resumo | |
The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set A subset of X there is a subset B subset of A such that (B) over bar \textbackslash{} A is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communication. (AU) | |
Processo FAPESP: | 13/14640-1 - Conjuntos discretos e invariantes cardinais em topologia conjuntista |
Beneficiário: | Santi Domenico Spadaro |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |