Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Graded identities of block-triangular matrices

Texto completo
Autor(es):
Pereira Da Silva e Silva, Diogo Diniz ; de Mello, Thiago Castilho
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Algebra; v. 464, p. 246-265, OCT 15 2016.
Citações Web of Science: 3
Resumo

Let F be an infinite field and UT(d(1),..., d(n)) be the algebra of upper block-triangular matrices over F. In this paper we describe a basis for the C-graded polynomial identities of UT(d(1),..., d(n)), with an elementary grading induced by an n-tuple of elements of a group G such that the neutral component corresponds to the diagonal of UT(d(1),..., d(n)). In particular, we prove that the monomial identities of such algebra follow from the ones of degree up to 2n - 1. Our results generalize, for infinite fields of arbitrary characteristic, previous results in the literature which were obtained for fields of characteristic zero and for particular G-gradings. In the characteristic zero case we also generalize results for the algebra UT(d(1),..., d(n)) circle times C with a tensor product grading, where C is a color commutative algebra generating the variety of all color commutative algebras. (C) 2016 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 14/09310-5 - Estruturas algébricas e suas representações
Beneficiário:Vyacheslav Futorny
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/10352-4 - Álgebras variedades e identidades
Beneficiário:Thiago Castilho de Mello
Modalidade de apoio: Auxílio à Pesquisa - Regular