Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Unexpected links reflect the noise in networks

Texto completo
Autor(es):
Yambartsev, Anatoly ; Perlin, Michael A. ; Kovchegov, Yevgeniy ; Shulzhenko, Natalia ; Mine, Karina L. ; Dong, Xiaoxi ; Morgun, Andrey
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: BIOLOGY DIRECT; v. 11, OCT 13 2016.
Citações Web of Science: 7
Resumo

Background: Gene covariation networks are commonly used to study biological processes. The inference of gene covariation networks from observational data can be challenging, especially considering the large number of players involved and the small number of biological replicates available for analysis. Results: We propose a new statistical method for estimating the number of erroneous edges in reconstructed networks that strongly enhances commonly used inference approaches. This method is based on a special relationship between sign of correlation (positive/negative) and directionality (up/down) of gene regulation, and allows for the identification and removal of approximately half of all erroneous edges. Using the mathematical model of Bayesian networks and positive correlation inequalities we establish a mathematical foundation for our method. Analyzing existing biological datasets, we find a strong correlation between the results of our method and false discovery rate (FDR). Furthermore, simulation analysis demonstrates that our method provides a more accurate estimate of network error than FDR. Conclusions: Thus, our study provides a new robust approach for improving reconstruction of covariation networks. (AU)

Processo FAPESP: 12/06564-0 - Uma propriedade topológica nova como a medida de robustez de redes regulatórias
Beneficiário:Anatoli Iambartsev
Modalidade de apoio: Bolsas no Exterior - Pesquisa