Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quantile regression in linear mixed models: a stochastic approximation EM approach

Texto completo
Autor(es):
Galarza, Christian E. ; Lachos, Victor H. ; Bandyopadhyay, Dipankar
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: STATISTICS AND ITS INTERFACE; v. 10, n. 3, p. 471-482, 2017.
Citações Web of Science: 5
Resumo

This paper develops a likelihood-based approach to analyze quantile regression (QR) models for continuous longitudinal data via the asymmetric Laplace distribution (ALD). Compared to the conventional mean regression approach, QR can characterize the entire conditional distribution of the outcome variable and is more robust to the presence of outliers and misspecification of the error distribution. Exploiting the nice hierarchical representation of the ALD, our classical approach follows a Stochastic Approximation of the EM (SAEM) algorithm in deriving exact maximum likelihood estimates of the fixed-effects and variance components. We evaluate the finite sample performance of the algorithm and the asymptotic properties of the ML estimates through empirical experiments and applications to two real life datasets. Our empirical results clearly indicate that the SAEM estimates outperforms the estimates obtained via the combination of Gaussian quadrature and non-smooth optimization routines of the Geraci and Bottai (2014) approach in terms of standard errors and mean square error. The proposed SAEM algorithm is implemented in the R. package qrLMM( ). (AU)

Processo FAPESP: 15/17110-9 - Estimação Robusta em Modelos Espaciais para Dados Censurados.
Beneficiário:Christian Eduardo Galarza Morales
Modalidade de apoio: Bolsas no Brasil - Doutorado