Folheações holomorfas cujo feixe tangente é localmente livre
12th Mini-Workshop on Singularities, Geometry and Differential Equations and 1st M...
Variedades invariantes e conjuntos periódicos limite de folheações descontínuas
Texto completo | |
Autor(es): |
Calvo-Andrade, O.
;
Correa, M.
;
Fernandez-Perez, A.
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | INTERNATIONAL JOURNAL OF MATHEMATICS; v. 28, n. 3 MAR 2017. |
Citações Web of Science: | 0 |
Resumo | |
We consider holomorphic foliations of dimension k > 1 and codimension >= 1 in the projective space P-n, with a compact connected component of the Kupka set. We prove that if the transversal type is linear with positive integer eigenvalues, then the foliation consists of the fibers of a rational fibration Phi : P-n -> Pn- k. As a corollary, if dim(F) >= cod(F) + 2 and has a transversal type diagonal with different eigenvalues, then the Kupka component K is a complete intersection and the leaves of the foliation define a rational fibration. The same conclusion holds if the Kupka set has a radial transversal type. Finally, as an application, we find a normal form for non-integrable codimensionone distributions on P-n. (AU) | |
Processo FAPESP: | 14/23594-6 - Folheações holomorfas cujo feixe tangente é localmente livre |
Beneficiário: | Marcos Benevenuto Jardim |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |