Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Dynamics of Commodities Prices: Integer and Fractional Models

Texto completo
Autor(es):
David, Sergio A. ; Tenreiro Machado, J. A. ; Trevisan, Lucas R. ; Inacio, Jr., Claudio M. C. ; Lopes, Antonio M.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: FUNDAMENTA INFORMATICAE; v. 151, n. 1-4, p. 389-408, 2017.
Citações Web of Science: 2
Resumo

This paper examines the time series of four important agricultural commodities, namely the soybean, corn, coffee and sugar prices. Time series can exhibit long- range dependence and persistence in their observation. The long memory feature of data is a documented fact and there has been an increasing interest in studying such concepts in the perspective of economics and finance. In this work, we start by analyzing the time series of the four commodities by means of the Fractional Fourier Transform (FrFT) to unveil time- frequency patterns in the data. In a second phase, we apply Auto Regressive Integrated Moving Average (ARIMA) and Auto Regressive Fractionally Integrated Moving Average (ARFIMA) models for obtaining the spot price composition and predict future price. The ARFIMA process is a known class of long memory model, representing a generalization of the ARIMA algorithm. We compare the performances of the ARIMA and the ARFIMA models and we show that the ARFIMA has a superior performance for future price forecasting. (AU)

Processo FAPESP: 14/02041-9 - Cálculo fracionário em sistemas dinâmicos: aplicações envolvendo biossistemas agrícolas
Beneficiário:Sergio Adriani David
Modalidade de apoio: Auxílio à Pesquisa - Regular