Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom

Texto completo
Autor(es):
Okamoto, Cinthya Kimori ; van den Berg, Carmen W. ; Masashi, Mizuno ; Goncalves-de-Andrade, Rute M. ; Tambourgi, Denise V.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: TOXINS; v. 9, n. 3 MAR 2017.
Citações Web of Science: 1
Resumo

Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism. (AU)

Processo FAPESP: 13/07467-1 - CeTICS - Centro de Toxinas, Imuno-Resposta e Sinalização Celular
Beneficiário:Hugo Aguirre Armelin
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs