| Texto completo | |
| Autor(es): |
Bandyopadhyay, Dipankar
;
Galvis, Diana M.
;
Lachos, Victor H.
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | STATISTICAL METHODS IN MEDICAL RESEARCH; v. 26, n. 2, p. 880-897, APR 2017. |
| Citações Web of Science: | 2 |
| Resumo | |
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval {[}0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study. (AU) | |
| Processo FAPESP: | 14/02938-9 - Estimação e diagnostico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal. |
| Beneficiário: | Víctor Hugo Lachos Dávila |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |