Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Texto completo
Autor(es):
Bandyopadhyay, Dipankar ; Galvis, Diana M. ; Lachos, Victor H.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: STATISTICAL METHODS IN MEDICAL RESEARCH; v. 26, n. 2, p. 880-897, APR 2017.
Citações Web of Science: 2
Resumo

Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval {[}0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study. (AU)

Processo FAPESP: 14/02938-9 - Estimação e diagnostico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal.
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular