| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo - Brazil
Número total de Afiliações: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | JOURNAL OF COMBINATORIAL OPTIMIZATION; v. 34, n. 4, p. 1060-1083, NOV 2017. |
| Citações Web of Science: | 1 |
| Resumo | |
Let G be a connected graph and kappa be a positive integer. A vertex subset D of G is a kappa-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Min kappa-CDS). We prove that Min kappa-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Min kappa-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Min kappa-CDS on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for Min kappa-CDS. Finally, when kappa = 1, we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators. (AU) | |
| Processo FAPESP: | 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação |
| Beneficiário: | Carlos Eduardo Ferreira |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 15/11930-4 - Problemas de particionamento em grafos |
| Beneficiário: | Phablo Fernando Soares Moura |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Doutorado |
| Processo FAPESP: | 13/19179-0 - Problemas de otimização sobre partição em grafos |
| Beneficiário: | Phablo Fernando Soares Moura |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |