Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Almeria, Dept Matemat, Almeria 04120 - Spain
[2] Granada Univ, Inst Carlos Fis Teor & Computac 1, Granada - Spain
[3] Univ Estadual Paulista, UNESP, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
[4] Univ Fed Triangulo Mineiro, ICTE, BR-38064200 Uberaba, MG - Brazil
Número total de Afiliações: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | Mathematics of Computation; v. 87, n. 309, p. 261-288, JAN 2018. |
Citações Web of Science: | 3 |
Resumo | |
Given a nontrivial Borel measure mu on the unit circle T, the corresponding reproducing (or Christoffel-Darboux) kernels with one of the variables fixed at z = 1 constitute a family of so-called para-orthogonal polynomials, whose zeros belong to T. With a proper normalization they satisfy a three-term recurrence relation determined by two sequences of real coefficients, [c(n)] and [d(n)], where [d(n)] is additionally a positive chain sequence. Coefficients (c(n), d(n)) provide a parametrization of a family of measures related to mu by addition of a mass point at z = 1. In this paper we estimate the location of the extreme zeros (those closest to z = 1) of the para-orthogonal polynomials from the (c(n), d(n))-parametrization of the measure, and use this information to establish sufficient conditions for the existence of a gap in the support of mu at z = 1. These results are easily reformulated in order to find gaps in the support of mu at any other z epsilon T. We provide also some examples showing that the bounds are tight and illustrate their computational applications. (AU) | |
Processo FAPESP: | 09/13832-9 - Polinômios ortogonais, funções especiais e aplicações |
Beneficiário: | Dimitar Kolev Dimitrov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |