Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Nonparaxial Cartesian and azimuthally symmetric waves with concentrated wavevector and frequency spectra

Texto completo
Autor(es):
Corato-Zanarella, Mateus [1] ; Corato-Zanarella, Henrique [1] ; Zamboni-Rached, Michel [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Optics; v. 19, n. 11 NOV 2017.
Citações Web of Science: 0
Resumo

In this paper, we develop a theoretical analysis to efficiently handle superpositions of waves with concentrated wavevector and frequency spectra, allowing an easy analytical description of fields with interesting transverse profiles. First, we analyze an extension of the paraxial formalism that is more suitable for superposing these types of waves, as it does not rely on the use of coordinate rotations combined with paraxial assumptions. Second, and most importantly, we leverage the obtained results to describe azimuthally symmetric waves composed of superpositions of zero-order Bessel beams with close cone angles that can be as large as desired, unlike in the paraxial formalism. Throughout the paper, examples are presented, such as Airy beams with enhanced curvatures, nonparaxial Bessel-Gauss beams and circular parabolic-Gaussian beams (which are based on the Cartesian parabolic-Gaussian beams), and experimental data illustrates interesting transverse patterns achieved by superpositions of beams propagating in different directions. (AU)

Processo FAPESP: 15/26444-8 - Luz exótica: modelamento espaço-temporal de feixes e pulsos localizados com momento angular orbital para aplicações em fotônica, comunicações ópticas e guiamento óptico de átomos
Beneficiário:Michel Zamboni Rached
Modalidade de apoio: Auxílio à Pesquisa - Regular