| Texto completo | |
| Autor(es): |
Número total de Autores: 4
|
| Afiliação do(s) autor(es): | [1] Univ Estadual Paulista, UNESP, Inst Fis Teor, R Dr Bento T Ferraz 271, Bl 2, BR-01140070 Sao Paulo, SP - Brazil
[2] Univ Oviedo, Dept Phys, Avda Calvo Sotelo 18, Oviedo 33007 - Spain
[3] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Ramat Aviv - Israel
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | International Journal of Modern Physics A; v. 32, n. 33 NOV 30 2017. |
| Citações Web of Science: | 2 |
| Resumo | |
Knotted solutions to electromagnetism and fluid dynamics are investigated, based on relations we find between the two subjects. We can write fluid dynamics in electromagnetism language, but only on an initial surface, or for linear perturbations, and we use this map to find knotted fluid solutions, as well as new electromagnetic solutions. We find that knotted solutions of Maxwell electromagnetism are also solutions of more general nonlinear theories, like Born Infeld, and including ones which contain quantum corrections from couplings with other modes, like Euler Heisenberg and string theory DBI. Null configurations in electromagnetism can be described as a null pressureless fluid, and from this map we can find null fluid knotted solutions. A type of nonrelativistic reduction of the relativistic fluid equations is described, which allows us to find also solutions of the (nonrelativistic) Euler's equations. (AU) | |
| Processo FAPESP: | 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica |
| Beneficiário: | Nathan Jacob Berkovits |
| Modalidade de apoio: | Auxílio à Pesquisa - Projetos Especiais |
| Processo FAPESP: | 14/18634-9 - Dualidade gravitação/Teoria de Gauge |
| Beneficiário: | Victor de Oliveira Rivelles |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |